X-raying the Interstellar Medium

Edward Schlafly

Lawrence Berkeley National Laboratory

LIneA August 8, 2019

Eddie Schlafly (LBL)

Stars probe the ISM in 3D

My work uses stars to x-ray the dust and the ISM, giving a 3D view of the Galaxy's interstellar medium.

Stars probe the ISM in 3D

My work uses stars to x-ray the dust and the ISM, giving a 3D view of the Galaxy's interstellar medium.

Observables: amount of material, its size distribution, its velocity, its chemical composition, the magnetic field . . .

Eddie Schlafly (LBL)

Stars probe the ISM in 3D

My work uses stars to x-ray the dust and the ISM, giving a 3D view of the Galaxy's interstellar medium.

Observables: amount of material, its size distribution, its velocity, its chemical composition, the magnetic field . . . *We can map all of these in three dimensions*

Eddie Schlafly (LBL)

3D Maps of Dust Density

Dust Properties in 3D

New Surveys

Eddie Schlafly (LBL)

Outline

Introduction

3D Maps of Dust Density

Dust Properties in 3D

New Surveys

Eddie Schlafly (LBL)

What is dust?

Eddie Schlafly (LBL)

What is dust?

"holes in the heavens" (Herschel)

Eddie Schlafly (LBL)

Dust is Important

- Astrophysically
- Observationally

Eddie Schlafly (LBL)

Dust is Astrophysically Important

Dust is Astrophysically Important

- enables star formation
 - cooling
 - shielding
 - catalyzing
- tiny mass (1% of gas)
- 30% of light from the Milky Way

Dust is Astrophysically Important

- enables star formation
 - cooling
 - shielding
 - catalyzing
- tiny mass (1% of gas)
- 30% of light from the Milky Way
- planets

Dust is Observationally Important Schlegel, Finkbeiner, Davis (1998)

Dust is Observationally Important Schlegel, Finkbeiner, Davis (1998)

- dust extinguishes UV/optical/NIR light
- dust emits IR, millimeter, microwave light
- observationally hard to avoid

Dust is Observationally Important Schlegel, Finkbeiner, Davis (1998)

- dust extinguishes UV/optical/NIR light
- dust emits IR, millimeter, microwave light
- observationally hard to avoid
- 10,000 citations

Eddie Schlafly (LBL)

Current Dust Maps are only 2D

- Current maps give only the total dust column.
- Distance is also important!

Eddie Schlafly (LBL)

Current Dust Maps are only 2D

Cepheus Flare (SFD)

Eddie Schlafly (LBL)

Current Dust Maps are only 2D

Cepheus Flare (PS1)

Eddie Schlafly (LBL)

Current Dust Maps are only 2D

Cepheus Flare (PS1 near)

Eddie Schlafly (LBL)

Current Dust Maps are only 2D

Cepheus Flare (PS1 distant)

Eddie Schlafly (LBL)

Outline

Introduction

3D Maps of Dust Density

Dust Properties in 3D

New Surveys

Eddie Schlafly (LBL)

X-raying the Interstellar Medium

August 8, 2019 11 / 39

How to make a 3D map of dust

- 1. Large survey of stars
- 2. Precise photometry
- 3. Distance and reddening estimate for each star
- 4. Invert to get 3D map

Star-based 3D dust maps

Generally, tomographic analysis

infer 3D structure from noisy measurements of integrated density

CT scan

Eddie Schlafly (LBL)

Star-based 3D dust maps

- ho \sim 10⁹ stars needed for good spatial resolution
- Distances and amounts of dust are very uncertain
- Fit parameters are all coupled
 - more distant stars must be behind more dust than nearby ones
 - dust clouds are spatially correlated
- naively several billion parameter model \rightarrow impossible

Eddie Schlafly (LBL)

Star-based dust maps

- cannot just average (e.g., with a Wiener filter): distances are uncertain
- Most 3D dust maps ignore the distance uncertainty!

Star-based dust maps

- cannot just average (e.g., with a Wiener filter): distances are uncertain
- Most 3D dust maps ignore the distance uncertainty!

However...

- the problem can be factorized (Schlafly+14, Green, Schlafly+14)
- fit the amount of dust and the distance to each star, tracking full covariance
- pixelize sky and fit each line-of-sight independently
- iterate to introduce correlations

Star-based dust maps

- cannot just average (e.g., with a Wiener filter): distances are uncertain
- Most 3D dust maps ignore the distance uncertainty!

However...

- the problem can be factorized (Schlafly+14, Green, Schlafly+14)
- fit the amount of dust and the distance to each star, tracking full covariance
- pixelize sky and fit each line-of-sight independently
- iterate to introduce correlations
- ▶ impossible problem → very expensive problem (2.5 million CPU hours) (Green, Schlafly+14, 15, 18)

Eddie Schlafly (LBL)

Does it work?

(movies)

Eddie Schlafly (LBL)

X-raying the Interstellar Medium

August 8, 2019 16 / 39

Eddie Schlafly (LBL)

Eddie Schlafly (LBL)

X-raying the Interstellar Medium

Results

- unprecedented map of Milky Way dust (Green, Schlafly+14, 15, 18)
- best distances to molecular clouds (Zucker, Schlafly+19)
- dust property variations in 3D (Schlafly+16, 17)

Outline

Introduction

3D Maps of Dust Density

Dust Properties in 3D

New Surveys

Eddie Schlafly (LBL)

X-raying the Interstellar Medium

August 8, 2019 19 / 39

The Extinction Curve

Fitzpatrick (1999) extinction curve

Diagnostic of dust grain size distribution

Eddie Schlafly (LBL)

Variation in the extinction curve

Cardelli, Clayton, & Mathis (1989)

Eddie Schlafly (LBL)

Variation in the extinction curve

Cardelli, Clayton, & Mathis (1989)

Entirely empirical curve, presumably determined by:

- grain size distribution
- grain composition
- grain processing

Eddie Schlafly (LBL)

Dust evolution

Zhukovska & Henning (2014)

Eddie Schlafly (LBL)

The Pair Method

- Simple method: compare spectra of reddened and unreddened stars
- Dates back to Trumpler, Johnson, ...
- Huge number of stars probing Milky Way available today

The Pair Method

- Simple method: compare spectra of reddened and unreddened stars
- Dates back to Trumpler, Johnson, ...
- Huge number of stars probing Milky Way available today

Fitzpatrick & Massa (2007), 328 stars

Eddie Schlafly (LBL)

The Pair Method

- Simple method: compare spectra of reddened and unreddened stars
- Dates back to Trumpler, Johnson, ...
- Huge number of stars probing Milky Way available today

APOGEE & PS1 & 2MASS & WISE, 37000 stars (Schlafly+16)

How does the extinction curve vary spatially?

How does the extinction curve vary spatially?

Dominant variations on large scales, *not* small scale variations in dense molecular clouds.

Eddie Schlafly (LBL)

But what about 3D?

$2D\to 3D$

Dust Properties in 3D

$2D \rightarrow 3D$

- ▶ 3D dust map made with 10⁹ stars
- 20,000 stars with good R(V) measurements
- ▶ How to infer 3D *R*(*V*) map?

Dust Properties in 3D

 $2D \rightarrow 3D$

- 3D dust map made with 10⁹ stars
- 20,000 stars with good R(V) measurements
- ▶ How to infer 3D R(V) map?

•
$$R(V) = \frac{\int_0^D ds \,\rho(I,b,s) R_{3D}(I,b,s)}{\int_0^D ds \,\rho(I,b,s)}$$

• Linear problem, especially easy to solve if R(V) is smooth in 3D.

Eddie Schlafly (LBL)

$2D\to 3D$

Clear imprint of 3D structure onto projected 2D R(V) map

Eddie Schlafly (LBL)

 $2D\to 3D$

Clear imprint of 3D structure onto projected 2D R(V) map

Eddie Schlafly (LBL)

 $2D\to 3D$

Clear imprint of 3D structure onto projected 2D R(V) map

Eddie Schlafly (LBL)

 $2D\to 3D$

Clear imprint of 3D structure onto projected 2D R(V) map

Eddie Schlafly (LBL)

$2D\to 3D$

Clear imprint of 3D structure onto projected 2D R(V) map

Eddie Schlafly (LBL)

 $2D\to 3D$

Clear imprint of 3D structure onto projected 2D R(V) map

Eddie Schlafly (LBL)

Galactic R(V) Map

Kiloparsec scale structures, possible Galactic gradient?

Eddie Schlafly (LBL)

Outline

Introduction

3D Maps of Dust Density

Dust Properties in 3D

New Surveys

Eddie Schlafly (LBL)

X-raying the Interstellar Medium

August 8, 2019 28 / 39

We can see a *lot* of stars in the Milky Way

Eddie Schlafly (LBL)

X-raying the Interstellar Medium

August 8, 2019 29 / 39

We can see a *lot* of stars in the Milky Way

Precise photometry of billions of overlapping stars is challenging!

Eddie Schlafly (LBL)

Modeling images: traditional approach

Single object: easy

position, brightess, few shape parameters

Eddie Schlafly (LBL)

Modeling images: traditional approach

- Single object: easy
 - position, brightess, few shape parameters
- Many objects: hard, due to blending
- Must simultaneously solve for fluxes and positions of all the sources
- Can be 10⁵ sources per image!

Modeling images: traditional approach

- Single object: easy
 - position, brightess, few shape parameters
- Many objects: hard, due to blending
- Must simultaneously solve for fluxes and positions of all the sources
- Can be 10⁵ sources per image!
- Typical approaches either ignore the problem, iterate, or try to cleverly segment the image.

Eddie Schlafly (LBL)

Crowded Field Modeling: Our approach

Crowded Field Modeling: Our approach

This is very nearly a *linear* problem

- $I(x,y) = \sum_i f_i P(x-x_i, y-y_i) + B(x,y)$
- fluxes f are linear
- sky background B can be parameterized with a linear model
- positions x_i, y_i can have good initial estimates, can be linearized
- sparse: each source occupies only $\sim 10^{-4}$ of the image

Crowded Field Modeling: Our approach

This is very nearly a *linear* problem

- $I(x,y) = \sum_{i} f_{i} P(x x_{i}, y y_{i}) + B(x,y)$
- fluxes f are linear
- sky background B can be parameterized with a linear model
- positions x_i, y_i can have good initial estimates, can be linearized
- sparse: each source occupies only $\sim 10^{-4}$ of the image
- Large scale linear algebra packages can solve problems with hundreds of thousands of parameters, e.g., via conjugate gradient method

Eddie Schlafly (LBL)

A New Crowded Field Photometry Pipeline

This approach works!

- crowdsource (Schlafly+2018)
- Applied to DECam Plane Survey and WISE Survey (Schlafly+18, 19)
- \blacktriangleright ~ 4 billion detected sources!

A New Crowded Field Photometry Pipeline

This approach works!

- crowdsource (Schlafly+2018)
- Applied to DECam Plane Survey and WISE Survey (Schlafly+18, 19)
- \blacktriangleright ~ 4 billion detected sources!

A New Crowded Field Photometry Pipeline

- crowdsource (Schlafly+2018)
- Applied to DECam Plane Survey and WISE Survey (Schlafly+18, 19)
- \blacktriangleright ~ 4 billion detected sources!

A New Crowded Field Photometry Pipeline

- crowdsource (Schlafly+2018)
- Applied to DECam Plane Survey and WISE Survey (Schlafly+18, 19)
- \blacktriangleright ~ 4 billion detected sources!

A New Crowded Field Photometry Pipeline

- crowdsource (Schlafly+2018)
- Applied to DECam Plane Survey and WISE Survey (Schlafly+18, 19)
- \blacktriangleright ~ 4 billion detected sources!

A New Crowded Field Photometry Pipeline

- crowdsource (Schlafly+2018)
- ▶ Applied to DECam Plane Survey and WISE Survey (Schlafly+18, 19)
- \blacktriangleright ~ 4 billion detected sources!

Applying crowdsource to real images

Eddie Schlafly (LBL)

Applying crowdsource to real images

- Asteroid characterization
- Nearby, ultra-cool stars (Backyard Worlds)
- High-redshift quasars (e.g., z = 7.5, Bañados+2018)
- Galaxy surveys: \sim 500 million galaxies over 0 < z < 2 (Schlafly+19)
- Galactic structure: \sim billion stars (Schlafly+19)

Eddie Schlafly (LBL)

The unWISE Catalog (Schlafly+19)

Galactic Anticenter W1

Eddie Schlafly (LBL)

The unWISE Catalog (Schlafly+19)

Galactic Anticenter W1 AllWISE

Eddie Schlafly (LBL)

The unWISE Catalog (Schlafly+19)

Galactic Anticenter W1 crowdsource

Eddie Schlafly (LBL)

The unWISE Catalog (Schlafly+19)

Galactic Anticenter W1 crowdsource model

Eddie Schlafly (LBL)

$3 \times$ more stars and galaxies. . . what can we do with this?

Eddie Schlafly (LBL)

X-raying the Interstellar Medium

August 8, 2019 35 / 39

$3 \times$ more stars and galaxies. . . what can we do with this?

- Correlation with Planck lensing, ISW maps (Ferraro, Krolewski, White, Schlafly)
- MaDCoWS2 galaxy cluster search, sensitive to 1 < z < 2 (Gonzalez)
- Nearby stars using six-month WISE coadds (Meisner, Schlafly)

The DECam Plane Survey

Eddie Schlafly (LBL)

Source Density

Source Density

20 billion detections of 2 billion objects

Eddie Schlafly (LBL)

Science

- New star clusters (Torrealba+2019)
- Predicted microlensing events (McGill+2018)
- High resolution 3D star & dust maps (Green, Zucker, Schlafly)

Conclusion

- Large, precise surveys x-ray the ISM, revealing
 - 3D density of dust at high resolution
 - Dust grain size distribution
 - Velocity field, magnetic field also accessible
- Bright future
 - DECam, WISE surveys of billions of stars
 - Transformative data from Gaia & SDSS-V
 - Numerous other forthcoming spectroscopic and photometric surveys

▶ 10⁹ PS1 stars

▶ 10⁹ PS1 stars

 Reddening and distance inference

Eddie Schlafly (LBL)

 Reddening and distance inference

Eddie Schlafly (LBL)

 Reddening and distance inference

Line of sight fit

Eddie Schlafly (LBL)

Monoceros (99.1, -10.73) (618 stars)

10⁹ PS1 stars
Reddening and distance inference

Line of sight fit

Eddie Schlafly (LBL)

 Reddening and distance inference

Line of sight fit

2.5M CPU hours

- Lots of related work!
 - Hanson, R. & Bailer-Jones (2014), (2015)
 - Sale+2014, Sale+2015, Sale+2017
 - Marshall+2006
 - Lallement+2014

For next-generation surveys, most fields are crowded

- Next generation surveys have more objects, meaning more overlapping objects
- Two-thirds of galaxies will be blended in LSST (Melchior+2018)
 - ▶ \sim 15% of blends will be unrecognized (Dawson+2016)
- The easy case: assume all objects are point sources
 - surveys with low spatial resolution (WISE, Kepler, TESS)
 - microlensing surveys

W1

W1

- ▶ 3× more stars and galaxies
- ▶ > 500 million galaxies, 0 < z < 2 (largest galaxy catalog in world?)

- 3× more stars and galaxies
- ▶ > 500 million galaxies, 0 < z < 2 (largest galaxy catalog in world?)
- enhanced photometric uniformity

Future Directions

- Transdimensional searches (Daylan+2016)
- Beyond maximum likelihood point estimate
- Machine learning to tell stars from galaxies
- Multi-epoch, multi-band analysis

Extinction and Emission are Linked

Planck team models dust emission with a modified blackbody: $I(\nu) = \tau_{\nu} B_{\nu}(T) (\nu/\nu_0)^{\beta}$

Extinction and Emission are Linked

Planck team models dust emission with a modified blackbody: $I(\nu) = \tau_{\nu} B_{\nu}(T) (\nu/\nu_0)^{\beta}$

Strong correlation between dust SED and R(V)

Eddie Schlafly (LBL)
Zasowski+2015

Does R(V) vary systematically with E(B - V)?

No correlation between R(V) and E(B - V), but E(B - V) is dust column density rather than volume density tracer. APOGEE Reddening Survey in APOGEE-2 to resolve this issue.

Eddie Schlafly (LBL)

Eddie Schlafly (LBL)

Distance Catalog

Schlafly+2014

Eddie Schlafly (LBL)

The Orion Dust Ring

Slice dust into foreground, Orion, and background

The Orion Dust Ring

Slice dust into foreground, Orion, and background

Eddie Schlafly (LBL)

2D Comparison: Aquila South

2D Comparison: Aquila South

Problems hard to avoid in "reddening" maps based on extinction.

Future reddening maps will be star-based.

Eddie Schlafly (LBL)

How variable is the extinction curve?

Somewhat smaller dispersion than literature (0.27), many fewer high R(V) sight lines (9.5% in FM07)

Eddie Schlafly (LBL)

3D R(V) Map Accuracy

Extinction and Emission are Linked

Planck (2014) β map

Eddie Schlafly (LBL)

Extinction and Emission are Linked

Large and small scale features in β closely linked to variations in R(V).

Eddie Schlafly (LBL)