

U.S. Department of Energy Office of Science

Cosmology from galaxy redshift surveys: current results and future techniques

LIneA, an e-Astronomy laboratory Webinar, 14th October 2021

Héctor Gil-Marín Institut de Ciències del Cosmos, Universitat de Barcelona hectorgil@icc.ub.edu

European Research

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Current Observational Probes

CMB

CMB

- Early-time physics
- **Quasi-linear physics**
- 2D surface
- Primary anisotropies are CV limited

LSS

- Late-time physics (DE Λ)
- Non-linear physics
- 3D volume
- Galaxy bias
- **Peculiar velocities**
- Wealth source of information

Spectroscopic surveys: angles and redshifts

- The redshift survey catalogues deliver: angles and redshifts for each galaxy
- Redshifts are converted to comoving distances assuming a cosmological model and assuming velocities are due to Hubble flow

$$r(z) = \int_0^z \frac{cdz'}{H(z', \Omega)}$$

• Produce a 3D map we use to extract information

Cosmology from galaxy redshift surveys: current results and future techniques

Spectroscopic surveys: information content

• LSS Galaxy Maps

a) Compression

- Cosmological parameters,
 - Dark Energy
 - Gravity
 - Inflation

• Features (BAO, RSD)

a) Compression: Summary statistics

- Galaxy Maps are non-deterministic
- Cosmological information described by n-point correlation functions.

- 1. For Gaussian fields (like CMB) P(k) contains all relevant information
- 2. Galaxy field is strongly non-Gaussian due to gravity evolution (mode-coupling)

*for BOSS bispectrum measurements see GM et al. 2016

$$(\mathbf{r}_1, \mathbf{r}_2) \oplus \xi^{(4)}(\mathbf{r}_1, \mathbf{r}_2, ...)$$

 $(\mathbf{r}_1, \mathbf{k}_2)^* \oplus T(\mathbf{k}_1, \mathbf{k}_2, ...)$

Higher-order functions

- Estimator efficiency
- Complexity of the model

b) Robust features: BAO as standard ruler

Sound waves travelling in earlytime plasma until decoupling

Imprinted in CMB photons & baryonic and DM distribution

- Cleanest probe to measure expansion in the LSS
- Provides a direct measurement of the expansion along and across the lineof-sight given the horizon scale.
 - requires knowledge of the horizon scale at recombination times: rdrag
 - uncalibrated BAO measures Ω_m

b) Robust features: BAO & AP

- Universe assumed isotropic and homogeneous
- Alcock-Paczynski (AP) effect: Anisotropy induced by transforming redshifts into coming distances assuming a *reference cosmology* (Alcock & Paczynski 1979)

BAO provides a reference-structure for the AP effect

b) Robust features: RSD

- Universe assumed isotropic and homogeneous
- **Redshift Space Distortions (RSD)**: Enhancement / reduction of the clustering \bullet along the line-of-sight direction due to peculiar velocities (Kaiser 1987)

$$\hat{\mathbf{x}}_{\parallel} \cdot \hat{\mathbf{x}}_{\perp} \cdot \mathbf{V}_{\perp}$$

$$\int_{\mathbf{f}(z)=\Omega_{m}(z)^{\gamma}}$$
rithmic arowth of structu

logarithmic growin of structure

$$z_{obs} = z_{true} \oplus z_{pec} \equiv \left[(1 + z_{true}) \times (1 + z_{pec}) \right]$$

1. Hubble flow 2. Coherent with growth of structure

Observed 'redshift' space

True 'real' space

b) Robust features: Kaiser toy model

$$P_{g}^{(s)}(k,\mu) = \begin{bmatrix} b+f\mu^{2} \end{bmatrix}^{2} P_{m}(k) \longrightarrow \text{Kaise}$$

$$P^{(s)}(k,\mu) = \begin{bmatrix} P^{(0)}(k)L_{0}(\mu) + P^{(2)}(k)L_{2}(\mu) + P^{(4)}(k) + P^{$$

$$P^{(0)}(k,z) = \left(b(z)^2 + \frac{2}{3}b(z)f(z) + \frac{1}{5}f(z)^2\right)$$
$$P^{(2)}(k,z) = \left(\frac{4}{3}b(z)f(z) + \frac{4}{7}f(z)^2\right)P_m(k,z)$$
$$P^{(4)}(k,z) = \left(\frac{8}{35}f(z)^2\right)P_m(k,z)$$

er linear term

10

Spectroscopic surveys: information content

a) Compression

• LSS Galaxy Maps

- **Cosmological parameters** \bullet
- Gravity \bullet
- Inflation

c) Interpretation

BOSS & eBOSS

Cosmology from galaxy redshift surveys: current results and future techniques

BOSS & eBOSS

eBOSS meeting 2018, München

SDSS-IV meeting 2018, Seoul

See animation <u>here</u>

eBOSS + BOSS Lyman- α (2008-2019) eBOSS + SDSS I-II Quasars (1998-2019) eBOSS Young Blue Galaxies (2014-2019) eBOSS Old Red Galaxies (2014-2019) BOSS Old Red Galaxies (2008-2014) SDSS I-II Nearby Galaxies (1998-2008)

Credit A. Raichoor

BOSS+eBOSS Ly-a

BOSS+eBOSS LRGs

BOSS LRGs

References

- Cosmology interpretation: <u>eBOSS collaboration et al.</u>
- Catalogues: Ross et al. (LRG & QSO), Raichoor et al. (ELG)
- LRG BAO & RSD: <u>Bautista et al.</u> (Config.), <u>GM et al</u>. (Fourier)
- ELG BAO & RSD: <u>Tamone et al.</u> (Config.), <u>de Mattia et al.</u> (Fourier)
- QSO BAO & RSD: <u>Hou et al.</u> (Config.), <u>Neveux et al.</u> (Fourier)
- Ly-α BAO: <u>du Mas des Bourboux et al.</u> (Config.)
- Fast-mocks: <u>Zhao et al.</u> (EZmocks), <u>Sicheng et al.</u> (GLAM-QPM)
- Mock challenges: <u>Rossi et al.</u> (LRG), <u>Smith et al.</u> (QSO), <u>Alam et al.</u> (ELG), <u>Ávila et al.</u> (ELG)
- Other: Zhao et al. (Multi-tracer), Aubert et al. (Voids), Nadathur et al. (Voids), Mohammad et al. (PIP weights)

Cosmology from galaxy redshift surveys: current results and future techniques

20 eBOSS papers submitted

c) Interpretation: Dark Energy

- 3 independent probes for Λ
- Unfair advantage of BAO: several redshift bins
- BAO tell us about flatness
 - BAO+CMB (Planck or other) tell us $\Omega_k=0$

17

c) Interpretation: $\omega - \omega_a - \Omega_k$

- Good agreement with LCDM
- DE consistent with cosmological constant
- Complementarity between BAO/ RSD, SN and CMB

$$\begin{split} & \text{time evolving} \\ & \omega(a) = \omega_0 + \omega_a(1-a) \\ & \text{constant} \end{split}$$

Cosmology from galaxy redshift surveys: current results and future techniques

Riess et al. 2019 **19**

c) Interpretation: Neutrinos Gaussian fits

Cosmology sensitive to the sum of neutrino masses

 Slight preference for Normal Hierarchy

-0.05

probability

Note

- Solid: posteriors with $\Sigma m_v > 0$ prior
- Dashed: Gaussian fits to posteriors

 $\Sigma m_{\nu} < 0.099 \text{ eV} (95)\%$

Cosmology from galaxy redshift surveys: current results and future techniques

22

Cosmology from galaxy redshift surveys: current results and future techniques

DESI Forescast

Why should we go blind?

Avoid confirmation bias

What do we want to blind?

• We blind the redshifts, not angular positions. Blind for cosmology not for systematics

BAO blinding

Aim to blind the AP geometrical distortions along the LOS

RSD blinding

• Aim to blind the the growth factor, f (along LOS)

Blinding Strategy

Proposal for blinding: catalogue level

- Pros: consistently blind for all statistics at once (eg. P(k) and $\xi(r)$).
- Cons: more complex process than just blind on summary statistics

Ref: Brieden, GM, Verde, Bernal 2020, arXiv: 2006.10857

Blinding Strategy

Blind along the line-of-sight

- Avoid modifying angular positions (imaging clustering is not blind anyway)
- Blind for BAO & RSD signal at the catalogue level through two redshift shifts,

1. geometrical AP-like shift

2. density-dependent RSD-like shift (requires reconstruction)

Blinding Strategy **Blinding the background (BAO)**

Distance

diam.

ang.

cmv.

 $\Omega^{\text{fid}} = \{\Omega_m, h, ...\}$ Arbitrary fiducial cosmology $\Omega^{\text{shift}} = \Omega^{\text{fid}} + \Delta \Omega$ $z_i \xrightarrow{\Omega^{\text{fid}}} D_{M,i} \xrightarrow{\Omega^{\text{shift}}} z'_i \xrightarrow{\Omega^{\text{fid}}} D'_{M,i}$ (blinded distances or blinded redshifts) $z'_i = z_i + \Delta z$ Fiducial Blinded **L** 1 $\alpha'_{\parallel,\perp} = \frac{D_x r_d^{\text{fid}}}{D_x^{\text{shift}} r_d};$

$$\alpha_{\parallel,\perp} = \frac{D_x r_d^{\Pi d}}{D_x^{\text{fid}} r_d};$$

Correction after unblinding before re-analysing

Blinding Strategy

Blinding the perturbations (RSD)

Use reconstruction to imprint a new logarithmic growth rate along the LOS ullet

Smooth the density field to solve for Ψ

$$\nabla \cdot \Psi + \frac{f}{b} \nabla \cdot (\Psi \cdot \hat{r}) \hat{r} = -\frac{\delta_g}{b};$$

Shift galaxies back by the total displacement field ψ , only using $\Delta f = f - f'$

r —

Scales below smoothing scale unmodified

$$r' + (f - f')(\Psi \cdot \hat{r})\hat{r};$$

where

$$f(z) = \Omega(z)^{\gamma^{GR}};$$

$$f'(z) = \Omega(z)^{\gamma'};$$

Blinding Tests

Proof of concept with BOSS CMASS & LOWZ data

BAO post-recon Original Blinded Corrected 1.05 1.02 [⊣] 0.99 0.96 0.93 0.84 0.90 0.96 1.02 0.96 1.02 α_{\perp} α_{\parallel}

Ref: Brieden, GM, Verde, Bernal 2020, arXiv: 2006.10857

ShapeFit: beyond BAO and RSD

Standard analysis: Uses a fixed template and modify it according to physical quantities: BAO (parallel and perpendicular) and RSD signal, and constrain: $D_H(z)/r_{drag}$, $D_M(z)/r_{drag}$, $f\sigma_8(z)$. Then later these can be used to constrains the parameters of any specific model: $\Omega_x h^2$, h, A_s, etc

Full Modellig (à la Planck): Boltzman code + non-linear correction to generate a P(k) signal and directly constrains the parameters of the model: $\Omega_x h^2$, h, A_s, etc

- How much information is lost when compressing?
- Where does this (extra) information come from?
- Is this information robust under systematics?
- Which is the effect of fixing the template in the classical analysis?

ShapeFit: beyond BAO and RSD

• LSS Galaxy Maps

- **Cosmological parameters** \bullet
- Gravity
- Inflation \bullet

c) Interpretation

Summary Statistics

ShapeFit: beyond BAO and RSD

• LSS Galaxy Maps

- **Cosmological parameters** \bullet
- Gravity
- Inflation

 $\{\Omega_h h^2, \Omega_m h^2, h, A_s, n_s, \dots\}$

1.3

c) Interpretation

• Summary Statistics

General Picture

"Standard RSD"

"Model-independent"

"Fixed template"

"Late-time physics"

"Parameter compression"

 $\left\{ \alpha_{\parallel}, \alpha_{\perp}, f\sigma_{8}, \dots \right\}$

"Observation"

Cosmology from galaxy redshift surveys: current results and future techniques

"Full Modelling"

"Model-dependent" "Varying template" "Early-time physics" "No compression"

 $\left\{\omega_{\rm b}, \omega_{cdm}, h, \sigma_8, n_s, M_{\nu}, \dots\right\}$

"Theory"

Quick Comparison

- Grey: Standard RSD
- Orange: Standard RSD + reconstructed BAO
- Blue: Full modelling (FM)

FM Fit gets much tighter constrains on cosmological parameters

Application to BOSS DR12:

Quick Comparison

- Grey: Standard RSD
- Orange: Standard RSD + reconstructed BAO
- Blue: Full modelling (FM)

0.686 FM Fit gets much tighter 0.677 constrains on **C** 0.669 cosmological parameters 0.66

0.651

Application to BOSS DR12 + Planck:

Modelling transfer function dependence

Take EH98 shape function, and fit sigmoid to it:

$$\frac{\text{true}(k)}{\text{pfid}(k)} = \exp\left\{\frac{m_1}{a} \tanh\left[a\ln\left(\frac{k}{k_p}\right) + m_2\ln\left(\frac{k}{k_p}\right)\right]\right\}$$

$$a = 0.6;$$
 $k_p = \pi / r_d^{\text{ref}}$

Extra free parameter $m_1 \equiv m_1$ $m_1[\Omega_m h]$ $m_2[n_s]$ Fix to fiducial

Ref: Brieden, GM, Verde 2021, arXiv: 2106.07641

Main message, in one slide:

Compressed Variables

Standard BAO analysis

 $D_M(z)/r_{\rm drag}$

 $D_H(z)/r_{\rm drag}$

+

Standard RSD analysis

+

ShapeFit analysis

 $f \times \sigma_8$

M

{ $D_M(z)/r_{drag}, D_H(z)/r_{drag}, f\sigma_8(z), m(z)$ }

Ref: Brieden, GM, Verde 2021, arXiv: 2106.11931

Main message, in one slide:

Compressed Variables

Standard BAO analysis

 $D_M(z)/r_{\rm drag}$

 $D_H(z)/r_{\rm drag}$

+

Standard RSD analysis

+

ShapeFit analysis

 $f \times \sigma_8$

M

{ $D_M(z)/r_{drag}, D_H(z)/r_{drag}, f\sigma_8(z), m(z)$ }

Ref: Brieden, GM, Verde 2021, arXiv: 2106.11931

Summary

- BOSS+eBOSS is the sample with the largest redshift range than any other probe Percent-level precision on BAO distance scale at each redshift
- Growth measurements to z<1.5
- Agreement with LCDM and Planck results and detection of DE using BAO-only DESI has just started observing. Stay tuned for 2022!
 - DESI analyses will be blind to BAO/RSD. Results more robust \bullet
 - Extra physics beyond BAO/RSD (transfer function) may be used to extract
 - extra cosmology information (ShapeFit methodology).

