Measuring Lensing Survey Redshift Distributions with Self-Organizing
Maps
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Large scale structure is a valuable probe of cosmology.
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Cosmic shear 1s a valuable probe of cosmology.
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Cosmic shear 1s host to an interesting debate about redshifts.
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As light passes massive structures, it is bent due to gravity. This effect shifts,

magnifies, and shears the galaxy image.
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As light passes massive structures, it is bent due to gravity. This effect shifts,

magnifies, and shears the galaxy image.
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Testing alcosmological mode]lwith cosmic shear dei ends on a statistical ensemble of two basic

measurements: galaxylshapesfand Iredshifts. I
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The 3x2pt analysis is the cosmological workhorse of DES.

- Cosmic Shear

- The galaxy shape two point correlation functions.
- Galaxy Clustering

- The galaxy position two point correlation function.
- Galaxy-Galaxy Lensing

- The correlation function of the shape of background galaxies with the positions of foreground galaxies.



The Dark Energy Survey is among a group of leading lensing experiments.
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Photometric redshifts rely on understanding the color-redshift relation.
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The statistical color-redshift relation is fraught with degeneracies that are unavoidable in wide
tield surveys.
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Neither of the two prevailing photo-z solution paradigms solve the real problem: degeneracies in
the statistical color-redshift relation.
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1. Machine learning the spectroscopic redshift to wide field flux relationship is flawed because they are
trained on biased or incomplete spectroscopic samples whose selection function is necessarily
different than the wide field sample.

2. Template fitting codes rely on analytical recipes that can be insufficient to accurately describe the
observed color- redshift relation of galaxies
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Selection biases introduced by using spectroscopic redshift samples are key to the redshift debate.
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sompz is one part of a larger DES Y3 redshift effort. Our work focuses on how to leverage the deep fields
to break the key degeneracies in the statistical color-redshift relation.
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We can leverage overlap of DES deep fields with archival NIR data
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Leveraging the deep fields to improve our knowledge of the statistical color-redshift relation

amounts to marginalizing over deep photometric information.
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In order to marginalize over deep photometric information, we must replace regions of
color space with discrete categories ¢ and ¢ .
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Our strategy is to leverage the deep fields in DES Y3 to improve our knowledge of the
statistical color-redshift relation.
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The self-organizing map classifies galaxies of similar colors into categories
called cells.

Redshift distribution Deep SOM Wide SOM
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The self-organizing map learns to smoothly cover color space, which
facilitates interpolation of cells for which we have less than average counts.
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The self-organizing map groups together galaxies of similar colors in cells.

Training Input 1: .

step 1 step 1+1
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A modern cosmological analysis necessarily depends on using numerous independent
constraints and sophisticated sampling procedures over relevant uncertainties to verify the
robustness of the overall measurement.
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DES Y3 Preliminary n(z) Results

Validation of method on simulations

Result of method applied to data

Estimate of key sources of uncertainty
- Sample Variance in the deep fields
- Deep field photometric calibration error
- Redshift sample biases

Probability Integral Transform (PIT) samples
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On average, the method recovers the true n(z) in tests on simulations.

Buzzard n(z) (N = 299 realizations)
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We have fiducial estimates of the redshift distributions of our weak lensing source sample in four tomographic bins.
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We can derive a simple estimate on the uncertainty in mean redshift per bin due to sample variance

by running with many different underlying deep and redshift fields in simulations.

Y1: GZ~O.012 from
these effects
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Our cosmology result will robustly account for the uncertainty in our estimate due to the

photometric calibration error of the deep fields.
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Our cosmology result will robustly account for the uncertainty in our estimate due to systematic

biases in the redshifts of the sample.
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We have developed a sampling procedure which preserves the full variation in an ensemble of n(z),

enabling us to test how our cosmology depends on specific moments of the n(z).
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This PIT preserves the variance on the shift in the mean redshift per bin from the underlying
Buzzard realizations. Importantly, the PIT transfers not only the shift in the mean, but the full

information on the variation in n(z) from each sample

bin 0: oa(z) =0.0064 bin 1: oa(z) =0.0042
15 - 15 1
10 - 10 1
5 5
0 T T T T T T T 0 n T T T T T
0.340 0.345 0.350 0.335 0.360 0.365 0.370 0.520 0.525 0.530 0.535 0.540
bin 2: oa(z) =0.0032 bin 3: oa(z) =0.0033
15.0
15 4 12.5 1
10.0
10 7.5
5.0
5 -
0 T T T T 0-0 T T T T
0.7350 0.735 0.760 0.765 0.770 0.940 0.945 0.950 0.955
A(z) A(z)

37



Summary

sompz aims to directly address the fundamental photo-z problem -- degeneracies in the
color-redshift relation -- by leveraging deep, many-band photometry

We have characterized the key uncertainties in our result:
- We need to maximize the overlap of NIR and optical wide field surveys
- We need to collect more spectra
- We need to improve the photometric calibration of our deep fields

We have a new method of generating an ensemble of n(z) reflecting our uncertainty in the
underlying distribution which preserves not just the mean, but higher order moments
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Testing a cosmological model with cosmic shear depends on a statistical ensemble of two basic
measurements: galaxy[shapes|and redshifts.
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Our cosmology result will robustly account for the uncertainty in our estimate due to the

photometric calibration error of the deep fields.
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Results on Data

To get lensing weighted n(z), we use each galaxy’s shear response R, an explicit lensing weight w,

and, for Balrog galaxies, normalize by the number of injections.
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Probability Integral Transform Samples
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Results on Buzzard

We can use these samples to assess the impact of bin conditionalization on our result.
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Construction of bins is done by assigning each galaxy in our Balrog sample to a tomographic bin according to some
arbitrary bin edges such that each bin have a similar number of galaxies, and assigning each wide som cell to the bin to
which a plurality of its constituent Balrog galaxies are assigned.
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The analysis on Buzzard (Buchs et al. 2018) suggests we are limited by deep fields.

- The scatter in the bias of the mean inferred redshift is dominated by limited
deep fields, not limited redshift samples. This motivates follow-up
observations overlapping with existing infrared surveys.

- The pheno-z method can reduce cosmic variance significantly.
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The Deep Fields : deep DECam photometry + NIR

Field ! COSMOS(C) ;. CDFS(C3) | XMM(X3) :  Elais(E2)
NIR data Ultravista i VIDEO ! VIDEO VIDEO
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