Fundamental Physics with the Smallest Galaxies

THE DARK ENERGY SURVEY
Fermi Gamma-Ray Space Telescope

Fundamental Physics with the Smallest Galaxies

Alex Drlica-Wagner
LIneA Webinar August 18, 2016

Lincen

Also see Keith Bechtol talk at AAS (several slides borrowed)

THE DARK ENEREY SURVEY
Fermi Gamma-Ray Space Telescope

* Introduction to Dwarf Galaxies
* Finding New Dwarf Galaxies
* Our Newest Neighbors
* Dwarf Galaxies and Dark Matter
* Future Prospects

* Introduction to Dwarf Galaxies

* Finding New Dwarf Galaxies
* Our Newest Neighbors
* Dwarf Galaxies and Dark Matter
* Future Prospects

Milky Way Satellite Galaxies

"Brightness"

$z=0.0$

80 kpc

.

Primordial Dwarfs

Centrals Subhalos

Ultra-faint galaxies are the most numerous, ancient, chemically pristine, and dark matter dominated galaxies.

The Origin of the Heavy Elements

The Epoch of Reionization

Origin of r-process Elements

Supernovae
(~10-7.5 M。of Eu per event)

Neutron Star Mergers
(~10-4.5 M。of Eu per event)

Local Connection to High-Redshift Universe

Star-formation histories of Local Group galaxies constrain faint end of UV luminosity function during epoch of reionization

Open Issues for Cold Dark Matter Paradigm at Smallest Scales

"Missing Satellites Problem"
Expect ~ 1000 luminous subhalos in Local Group, but only ~ 100 detected so far (includes Andromeda)

Klypin et al. 1999
Moore et al. 1999

Stellar Mass

Open Issues for Cold Dark Matter Paradigm at Smallest Scales

Radius

"Central Density Problem"

Numerical simulations with CDM only predict the existence of subhalos with higher central densities than observed in known

Milky Way satellites (and isolated dwarfs)

"Core-cusp"
"Too big to fail"

Flores \& Primack 1994 Moore 1994

Lower Luminosity

More Dark Matter Dominated

Cleaner Probes of Fundamental Physics

* Introduction to Dwarf Galaxies

* Finding New Dwarf Galaxies
* Our Newest Neighbors
* Dwarf Galaxies and Dark Matter
* Future Prospects

Finding Milky Way Satellite Galaxies

Detectors Drive Discoveries

- First objects discovered by visual scans of photographic plates

Sculptor

1.2m Telescope Photographic Plates

Discovery Timeline

Matched-Filter Searches

Koposov et al. (2008) Walsh et al. (2009) Willman et al. (2010)

Spatial Domain

SDSS DR10

Maximum-Likelihood Searches

$$
p_{i}=\frac{\lambda u_{i}}{\lambda u_{i}+b_{i}}
$$

$$
\lambda=\frac{1}{f} \sum_{i \in \mathrm{Stars}} p_{i}
$$

$$
\log L=-\sum_{i \in \text { Stars }} \log \left(1-p_{i}\right)-f \lambda
$$

Survey Sensitivity

A likelihood analysis to simultaneously combines spatial and spectral information

$$
\begin{aligned}
& u_{i}=\text { sig prob } \\
& b_{i}=\text { bkg prob } \\
& \lambda=\text { normalization }=\text { number of stars } \\
& f=\text { observable fraction }
\end{aligned}
$$

This approach naturally yields a membership probability for each star; important for spectroscopy

4 m Telescope DECam CCD Camera

Discovery Timeline

SDSS DR10 + DES Y2

Blue - Previously discovered satellites
Green - Discovered in 2015 with PanSTARRS, SDSS, etc.

Red outline - DES footprint
Red circles - DES Y1 satellites
Red triangles - DES Y2 satellites

Galaxies or Star Clusters?

Discovery Timeline

THE DARK
ENERGY SURVEY

Spectroscopic Follow-up

* Introduction to Dwarf Galaxies

* Finding New Dwarf Galaxies
* Our Newest Neighbors
* Dwarf Galaxies and Dark Matter
* Future Prospects

Low Neutral Gas Content

Nine dSphs found in first-year DES data found to have low neutral gas content, similar to previously known dSphs around the Milky Way

Galaxies beyond Milky Way virial radius tend to be more gas rich than those within

Fermilab

Crnojevic et al. [1604.08590]

MACHO dark matter would disrupt this cluster by dynamical heating.

The existence of the star cluster can place limits on the fraction of MACHO dark matter

Brandt [1605.03665]

Heavy Elements in Reticulum II

Neutron-capture abundance patterns for 4 brightest Ret II stars

r-process
s-process

Magellanic Satellites?

With DES sensitivity expect 100+ satellites over the entire sky

DES Collaboration [1503.02584]

30+ of these satellites contributed by the LMC/SMC

Introduction to Dwarf Galaxies

* Finding New Dwarf Galaxies
* Our Newest Neighbors
* Dwarf Galaxies and Dark Matter
* Future Prospects

Dark Matter Annihilation

Neutral Particles

(γ, v)

Dark Matter Distribution

$$
\int_{\Delta \Omega(\phi, \theta)} d \Omega^{\prime} \int_{\text {los }} \rho^{2}\left(r\left(l, \phi^{\prime}\right)\right) d l\left(r, \phi^{\prime}\right)
$$

Galactic Substructure:

- Lower statistics
-Lower background

Galactic Halo:

- Larger signal
- Larger background

Si-Strip Tracker: convert $\gamma->e^{+} e^{-}$ reconstruct γ direction EM vs. hadron separation

Hodoscopic CsI Calorimeter:

 measure γ energy image EM shower EM v. hadron separationPublic Data Release:
All γ-ray data made public within 24 hours (usually less)

Fermi-LAT Performance

Gamma-Ray Data (E $\gamma>1 \mathrm{GeV}$)

Active Galactic Nuclei ($\mathrm{N}>1100$)

Pulsars ($\mathrm{N}>100$)

Galactic Diffuse Emission

Isotropic Diffuse Emission

+ a lot of additional astrophysics

The Galactic Center

The Galactic Center is an appealing target for dark matter searches

- Rich in dark matter
- Relatively nearby

However, the Galactic Center is astrophysically complicated

- Diffuse emission from cosmic-ray interactions with Galactic gas and dust
- Densely populated by astrophysical sources (e.g., pulsars, SNR), which are detected in other wavelengths (e.g., radio, X-ray, TeV)

Topic of extensive recent research (much led here at Fermilab)...

- Hooper \& Linden (2011); Boyarski et al. (2011); Abazajian \& Kaplinghat (2012); Gordon \& Macias (2013); Huang et al. (2013); Abazajian et al. (2014); Daylan et al. (2014); Calore et al. (2014); Lee et al. (2015); Bartels et al. (2015) Ajello et al. (2015); etc.

Total Flux

Spatially extended

Dark Matter Distribution

$$
\int_{\Delta \Omega(\phi, \theta)} d \Omega^{\prime} \int_{l o s} \rho^{2}\left(r\left(l, \phi^{\prime}\right)\right) d l\left(r, \phi^{\prime}\right)
$$

Galactic Substructure:

- Lower statistics
-Lower background

Galactic Halo:

- Larger signal
- Larger background

Milky Way Satellite Galaxies

Draco Dwarf Galaxy ($0.5 \mathrm{GeV}<\mathrm{E} \gamma<500 \mathrm{GeV}$)

Dark Matter Content (J-Factor)

$$
\int_{\Delta \Omega(\phi, \theta)} d \Omega^{\prime} \int_{l o s} \rho^{2}\left(r\left(l, \phi^{\prime}\right)\right) d l\left(r, \phi^{\prime}\right)
$$

- The dark matter content of dwarf galaxies can be determined from the velocities of their stars
- Measure the Doppler shift of atomic lines in stellar spectra
- Bright dwarf galaxies: velocities for thousands of stars
- Faint dwarf galaxies: velocities for fewer than one hundred stars
- A large dispersion of stellar velocities requires a large gravitational binding force

Combined upper limits from observations of 15 dwarf galaxies

Galactic Center Comparison

Fermilab

Galactic Center Comparison

Fermilab

THE DARK ENERGY SURVEY

${ }_{\text {GLON }}^{275}$

GLoN

$+$

Galactic Longitude

6.0
$+$
23 other dSphs...

Target 45 confirmed and candidate dSphs

Four targets show ~ 2 sigma (local) gamma-ray excesses

Two of these targets are nearby: Ret II and Tuc III ($\mathrm{D}<35 \mathrm{kpc}$)

Composite analysis depends on J-factor and uncertainty

No significant gamma-ray excess from the population of dwarf galaxies.

LAT \& DES Collaborations (submitted to ApJ)

Search for Gamma Rays

* Introduction to Dwarf Galaxies

* Finding New Dwarf Galaxies
* Our Newest Neighbors
* Dwarf Galaxies and Dark Matter
* Future Prospects

The Future with DES

- DES has started Year 4 (4+ tilings over entire footprint)
- A major image-level reprocessing campaign is on-going
- Reduce imaging artifacts
- Increased depth and uniformity
- Better calibration
- Sensitivity to fainter dwarf galaxies with large angular sizes
- Do galaxies extend to even lower surface brightness?
- Very nearby hyper-faint dwarf galaxies?
- Diffuse systems inhabiting large
 dark matter halos?

DES Collaboration, ApJ 813, 2 (2015)

Magellanic Satellites Survey

DES-depth imaging over a ~1200 deg 2 contiguous annulus around the Magellanic Clouds

12 nights between 2016A \& 2017A

THE DARK

- The Large Synoptic Survey Telescope (LSST)
- 3.2 gigapixel camera; 8.4-m primary mirror
- Full DES depth in 2×15 s exposures
- 10-year wide, fast, deep survey (20,000 deg 2) scheduled to start in 2023
- LSST will deliver: ~17 billion stars, ~20 billion galaxies, ~ 7 trillion detections, 0.5 exabytes of data
- LSST should be complete for the faintest known dwarf galaxies out to the virial radius of the Milky Way
- Nearby dwarfs with very low surface brightness:
Dark matter annihilation
- Ultra-faint dwarfs out to the virial radius: Missing satellites problem
- Massive dark matter halos with low surface brightness galaxies:
Too big to fail problem

Conclusions

- Ultra-faint galaxies are the most numerous, ancient, chemically pristine, and dark matter dominated galaxies.
- As extreme objects, dwarf galaxies are excellent probes of fundamental physics.
- However, due to their low luminosity, our census of dwarf galaxies is far from complete.
- DES (and other recent surveys) have greatly expanded our understanding of the Milky Way neighborhood

- The next generation of surveys (i.e., LSST) should complete our census of the ultra-faint dwarfs out to the virial radius of the Milky Way.

