Fundamental Physics with the Smallest Galaxies

Alex Drlica-Wagner

LineA Webinar August 18, 2016

Fermi Gamma-Ray Space Telescope

Fundamental Physics with the Smallest Galaxies

Alex Drlica-Wagner

LineA Webinar August 18, 2016

Also see Keith Bechtol talk at AAS (several slides borrowed)

THE DARK ENERGY SURVEY

Fermi Gamma-Ray Space Telescope

- Introduction to Dwarf Galaxies
- Finding New Dwarf Galaxies
- Our Newest Neighbors
- Dwarf Galaxies and Dark Matter
- Future Prospects

Introduction to Dwarf Galaxies

Finding New Dwarf Galaxies

Our Newest Neighbors

Dwarf Galaxies and Dark Matter

Future Prospects

Milky Way Satellite Galaxies

Milky Way Satellite Galaxies

sermi

Ultra-faint galaxies are the most numerous, ancient, chemically pristine, and dark matter dominated galaxies.

Origin of r-process Elements

Supernovae

(~10^{-7.5} M $_{\circ}$ of Eu per event)

Neutron Star Mergers (~10^{-4.5} M $_{\odot}$ of Eu per event)

Local Connection to High-Redshift Universe

Star-formation histories of Local Group galaxies constrain faint end of UV luminosity function during epoch of reionization

12

Open Issues for Cold Dark Matter Paradigm at Smallest Scales

Garrison-Kimmel et al. 2014, MNRAS, 438, 2578

Open Issues for Cold Dark Matter Paradigm at Smallest Scales

"Central Density Problem"

Numerical simulations with CDM only predict the existence of subhalos with higher central densities than observed in known Milky Way satellites (and isolated dwarfs)

> "Core-cusp" "Too big to fail"

Flores & Primack 1994 Moore 1994

Garrison-Kimmel et al. 2014, MNRAS, 444, 222

Cleaner Probes of Fundamental Physics

Introduction to Dwarf Galaxies

Finding New Dwarf Galaxies

Our Newest Neighbors

Dwarf Galaxies and Dark Matter

Future Prospects

Finding Milky Way Satellite Galaxies

Detectors Drive Discoveries

First objects discovered by visual scans of photographic plates

Matched-Filter Searches

The Dark Energy Survey

www.physicstoday.org

April 2014

A publication of the American Institute of Physics

volume 67, number 4

~3 deg² field-of-view

<20s readout time

Unprecedented sensitivity up to 1µm

Mounted on the 4m Blanco telescope at CTIO in Chile

Maximum-Likelihood Searches

A Very First Look...

SDSS DR10 + DES Y2

Blue - Previously discovered satellites Green - Discovered in 2015 with PanSTARRS, SDSS, etc.

Red outline - DES footprint Red circles - DES Y1 satellites Red triangles - DES Y2 satellites

Galaxies or Star Clusters?

Gamma-ray Space Telescope

Introduction to Dwarf Galaxies

Finding New Dwarf Galaxies

Our Newest Neighbors

Dwarf Galaxies and Dark Matter

Future Prospects

Low Neutral Gas Content

Nine dSphs found in first-year DES data found to have low neutral gas content, similar to previously known dSphs around the Milky Way

Galaxies beyond Milky Way virial radius tend to be more gas rich than those within

MACHOs in Eridanus II

Crnojevic et al. [1604.08590]

Brandt [1605.03665]

RGY SURVEY

Heavy Elements in Reticulum II

Ji et al. (2015) [arxiv:1512.01558]

also see Roederer et al. (2016) [1601.04070]

sermi

ENERGY SURVEY

Magellanic Satellites?

Introduction to Dwarf Galaxies

- Finding New Dwarf Galaxies
- Our Newest Neighbors
- Dwarf Galaxies and Dark Matter
- Future Prospects

Dark Matter Distribution

The Fermi Large Area Telescope

No Magnet

Public Data Release: All γ-ray data made public within 24 hours (usually less)

Fermi LAT Collaboration: ~400 Scientific Members, NASA / DOE & International Contributions

Si-Strip Tracker: convert γ->e⁺e⁻ reconstruct γ direction EM vs. hadron separation

Hodoscopic Csl Calorimeter: measure γ energy image EM shower EM v. hadron separation

Anti-Coincidence Detector:

Charged particle separation

Sky Survey: The LAT observes the whole sky every 3 hours (2.5 sr FOV) Trigger and Filter: Reduce data rate from ~10kHz to 300-500 Hz

Fermi-LAT Performance

Gamma-Ray Data ($E\gamma > 1$ GeV)

Active Galactic Nuclei (N>1100)

Data

Pulsars (N>100)

Galactic Diffuse Emission

Isotropic Diffuse Emission

+ a lot of additional astrophysics ...

The Galactic Center

The Galactic Center is an appealing target for dark matter searches

- Rich in dark matter
- Relatively nearby

However, the Galactic Center is astrophysically complicated

- Diffuse emission from cosmic-ray interactions with Galactic gas and dust
- Densely populated by astrophysical sources (e.g., pulsars, SNR), which are detected in other wavelengths (e.g., radio, X-ray, TeV)

Topic of extensive recent research (much led here at Fermilab)...

Hooper & Linden (2011); Boyarski et al. (2011); Abazajian & Kaplinghat (2012); Gordon & Macias (2013); Huang et al. (2013); Abazajian et al. (2014); Daylan et al. (2014); Calore et al. (2014); Lee et al. (2015); Bartels et al. (2015) Ajello et al. (2015); etc.

Gamma-ray Data (Eγ > 1 GeV)

The Galactic Center

Dermi

Gamma-ray pace Telescope

ENERGY SURVEY

The Galactic Center

sermi

ENERGY SURVEY

Dark Matter Distribution

Milky Way Satellite Galaxies

Dark Matter Halo Size
LAT Resolution (68%/95%)

Dark Matter Content (J-Factor)

$$\int_{\Delta\Omega(\phi,\theta)} d\Omega' \int_{los} \rho^2(r(l,\phi')) dl(r,\phi')$$

- The dark matter content of dwarf galaxies can be determined from the velocities of their stars
- Measure the Doppler shift of atomic lines in stellar spectra
 - Bright dwarf galaxies: velocities for thousands of stars
 - Faint dwarf galaxies: velocities for fewer than one hundred stars
- A large dispersion of stellar velocities requires a large gravitational binding force

Dwarf Galaxy Constraints

sermi

ENERGY SURVEY

Quanta Magazine & Kev Abazajian

Fermilab

Search for Gamma Rays

Gamma-ray data are already available for newly discovered dwarf galaxies

23 other dSphs...

Target 45 confirmed and candidate dSphs

Four targets show ~2 sigma (local) gamma-ray excesses

Two of these targets are nearby: Ret II and Tuc III (D < 35 kpc)

Composite analysis depends on J-factor and uncertainty

No significant gamma-ray excess from the population of dwarf galaxies.

LAT & DES Collaborations (submitted to ApJ)

Search for Gamma Rays

335° 330° 325° 320 GLON 0.1

Looking Forward

Introduction to Dwarf Galaxies

- Finding New Dwarf Galaxies
- Our Newest Neighbors
- Dwarf Galaxies and Dark Matter
- Future Prospects

- DES has started Year 4 (4+ tilings over entire footprint)
- A major image-level reprocessing campaign is on-going
 - Reduce imaging artifacts
 - Increased depth and uniformity
 - Better calibration
- Sensitivity to fainter dwarf galaxies with large angular sizes
 - Do galaxies extend to even lower surface brightness?
 - Very nearby hyper-faint dwarf galaxies?
 - Diffuse systems inhabiting large dark matter halos?

DES Collaboration, ApJ 813, 2 (2015)

DECam Sky Survey

Space Telescope

ENERGY SURVEY

LSS1

- The Large Synoptic Survey Telescope (LSST)
 - 3.2 gigapixel camera; 8.4-m primary mirror
 - Full DES depth in 2 x 15s exposures
 - 10-year wide, fast, deep survey (~20,000 deg²) scheduled to start in 2023
 - LSST will deliver: ~17 billion stars, ~20 billion galaxies, ~7 trillion detections, 0.5 exabytes of data
- LSST should be complete for the faintest known dwarf galaxies out to the virial radius of the Milky Way
 - Nearby dwarfs with very low surface brightness:
 Dark matter annihilation
 - Ultra-faint dwarfs out to the virial radius: Missing satellites problem
 - Massive dark matter halos with low surface brightness galaxies: Too big to fail problem

Projected Timeline

- Ultra-faint galaxies are the most numerous, ancient, chemically pristine, and dark matter dominated galaxies.
- As extreme objects, dwarf galaxies are excellent probes of fundamental physics.
- However, due to their low luminosity, our census of dwarf galaxies is far from complete.
- DES (and other recent surveys) have greatly expanded our understanding of the Milky Way neighborhood
- The next generation of surveys (i.e., LSST) should complete our census of the ultra-faint dwarfs out to the virial radius of the Milky Way.

