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Key Science Results:

- Understanding the non-linear clustering of galaxies gives important 

information about galaxy environment and how galaxies and baryons 

trace dark matter – beyond just galaxy bias

- An powerful approach to modelling galaxy clustering is the Halo 

Occupation Distribution (HOD) phenomenology

- Analysis of clustering in VIDEO supports mass quenching beginning 

about z~6-7, and environmental quenching beginning about z~1.5
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1. Background

• Large-Scale Structure; physics on the scales between 

galaxies and cosmology

•We now have a large number of probes of cosmology
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1888 versus 2019 (Sambit Giri and Hannah Ross, Stockholm)



Our Universe
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Cosmology
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(Courtesy of Pat Hall’s blog)

Cosmology
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Cosmology
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Hubble 1929
Betoule 2014



Planck Satellite image of the CMB, ESA

Cosmology
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Image Credit: NASA

Cosmology
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Many different 

probes of 

cosmology today



Dubinski 2003

Large-Scale Structure
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The Universe 

starts nearly 

homogeneous; 

dark matter 

structure grows 

under gravity



Wikipedia

Large-Scale Structure
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Dark matter 

forms non-

linear clumps 

called “haloes”



2. Galaxy Surveys

• Deep wide-field galaxy surveys let us probe cosmology 

and galaxy physics over cosmic time

• Two-point clustering statistics can tell us a lot about 

both galaxy environment and the large-scale structure 

of the Universe
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Miyazaki et al., 2013

Galaxy Surveys
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Stellar Mass 

Function
Mutch et al., 2013
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Galaxy Physics from Surveys



Cosmic SSFR
Madau and Dickinson., 2014

Galaxy Physics from Surveys
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Mass quenching 

versus environmental 

quenching?
Peng+2010
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Galaxy Physics from Surveys



Baryonic 

Acoustic 

Oscillations
Basset et al., 2010
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Cosmology from Clustering



Matter Power 

Spectrum
Tegmark et al., 2004

Cosmology from Clustering
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• Weak-lensing matter power spectrum (matter-matter coupling)

• Galaxy-galaxy lensing (matter-galaxy coupling)

• Galaxy clustering (galaxy-galaxy coupling)

• [Also magnification, CMB lensing potential and much more…]
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Cosmology from Clustering

Weak Lensing Shear
Basset et al., 2010

Berkeley National Laboratory



Radio source counts begin to invalidate Steady State theory in ~1961 

(CMB is 1964)
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Cosmology from Clustering

Condon+1984b



Galaxy clustering in the early 1990’s – an early hint of dark energy?

(SNe evidence comes out in 1998/1999, Efstathiou+1990 find 

suggestion of Ω" ≈ 0.8…)
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Cosmology from Clustering



2019 Nobel Prize in Physics goes to Jim Peebles for work on the large scale 

structure of the Universe! (and exoplanets)
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Cosmology from Clustering

Davis and Peebles 1982

(2400 galaxies!)



2. Halo Occupation Distribution 

(HOD) Modelling

•Model the linear and 

non-linear clustering 

collectively

• Get more physical 

properties than bias

25Abell S1063, APOD



Measuring Clustering

Try and form “random” data set of points that have identical properties apart 

from angular location to data set
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(Actually use Landy-Szalay 1993)
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Measuring Clustering
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Galaxy Bias

Kaiser et al., 1984

Galaxies have a different spatial distribution to matter
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Halo Properties Over Cosmic Time
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HOD Ingredients:

• (Cosmology)

• Halo mass function

• Halo bias prescription

• Dark matter power spectrum

• Halo profiles

• Occupation number

• Poisson assumption

• Central/satellite distinction

• 1-halo and 2-halo terms

Wake et al., 2011

-> Measure correlation function (and other 

variables)

-> Generate model correlation functions from 

galaxy-halo relation model

-> Fit parameters
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Halo Occupation Modelling
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Halo Occupation Modelling

(Plots created using Halomod, Steven Murray+)



3. Clustering in VIDEO

• Deep NIR and optical data to comparable depth to 

Euclid over 12deg2

•Work measuring and modelling clustering as a 

function of stellar mass and star formation rate
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The VIDEO Survey



The VISTA Deep Extragalactic Observations Survey

- Infrared (Z, Y, J, H, Ks band) with optical from CHFTLS

- >200 nights over 5 years

- Galaxy and structure evolution up to z=4

- AGN and most massive galaxies up to reionisation

- 3 fields; selected for multi-band data

- Fits between UltraVISTA and VIKING for depth and width

- 1sq degree here, soon 12 sq deg

- Right combination of width and depth for HOD

- VEILS will extend VIDEO fields

M.Jarvis et al., The VISTA Deep Extragalactic Observations (VIDEO) Survey, MNRAS (2013)
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The VIDEO Survey
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The VIDEO Survey

(Colour-cut to remove stars etc.)
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Calculating Redshifts

Galaxy Redshifts

Spec-z Photo-z Cluster-z

Template Fitting Machine Learning

Gaussian Processes Neural Networks …

LePhare and GPz used, see Almosallam 2016a,b



37

Calculating Redshifts
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Calculating Redshifts

Hatfield et al., 2020 Augmenting machine learning photometric redshifts with Gaussian mixture models,  MNRAS, 498, 4, 5498-5510 
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Calculating Redshifts

Hatfield et al., 2020 Augmenting machine learning photometric redshifts with Gaussian mixture models,  MNRAS, 498, 4, 5498-5510 



ACFs and HOD fits in VIDEO
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Modelling the Clustering
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Modelling the Clustering
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Modelling the Clustering
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Modelling the Clustering



• Most massive galaxies in highest mass halos, most highly biased

• More highly biased at high redshift

• Very small fraction of massive galaxies are satellites

• (Can do joint constraint with cosmology and marginalise out galaxy physics 

– make use of more of the correlation function)
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Modelling the Clustering
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• Mock catalogue from 

Horizon-AGN 

hydrodynamical 

cosmological simulation

• C.f. EAGLE, ILLUSTRIS…

• Also run with AGN 

feedback switched off

Comparison with Simulations
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• Compare observations and simulations in a consistent way

• Compare `actual’ simulation and `observed’ simulation

Comparison with Simulations

Laigle et al., 2019



• Doing full HOD model can test if differences in clustering between 

observations and simulation are a result of systematic differences in 

estimates of stellar mass, or differences in galaxy-halo relation etc.
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Comparison with Simulations
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• HOD modelling probably correctly captures SMHR

• Use of photo-z’s seems to lead to increase in estimate of scatter

Comparison with Simulations
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Comparison with Simulations



• Conventional HOD assumes galaxies trace NFW profile

• If galaxies are preferentially quenched or star forming in certain environments, this makes them follow slightly different 

profiles, which manifests itself in the 1-halo term

• Cross correlations also give information on covariance on occupation numbers

• Cross-correlation function can be used to study the ‘interaction’ of two galaxy samples

• See Simon+2009

Modelling the Cross-Correlation Function
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Modelling the Cross-Correlation Function
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Modelling the Cross-Correlation Function

(log sSFR<-11, log sSFR>-11) 



Bowler et al., 2014
Lyman Break Galaxies are one of our best 

probes into the z=5-9 Universe

Lyman-Break Galaxies
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• Above z~4 - Lyman Break Galaxies

• High luminosity LBGs are less rare than expected, but still highly clustered (b~8-10) – onset 

of quenching? (“Most biased objects in the Universe”)

• Relevant for reionisation

Bowler et al., 2014 Hatfield et al., 2018
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Lyman-Break Galaxies



4. Looking Ahead

•Many exciting upcoming surveys

•Much more things that can be done with small scale 

clustering
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Future Observations – MIGHTEE and VEILS
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Expanding to higher redshifts, a wider range of stellar 

masses, and larger angular scales



Into the 2020s…
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Euclid+Rubin+SKA



• Measured and modelled clustering in VIDEO

• Information about the role of environment at the peak of star 

formation, how galaxies trace matter, links to LSS cosmology

• Quenching mechanisms can be added to HOD

• Have measured the clustering of the brightest z~6 LBGs

In Future:

• The non-linear galaxy power spectrum in future surveys will give 

unprecedented precise probes of environment

• More data will justify more sophisticated models

• Redshift-space distortions will add dynamics to the story

• Multi-wavelength data important (Euclid+LSST+SKA)
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Conclusions
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Springel et al., 2006 (Millennium simulation)

Bias is linear on large scales; complex on halo scales

Galaxy Bias
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