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Motivation
§ Point estimates of galaxy properties determined with few photometric bands are 

imprecise. 

§ We require PDFs to fully characterise the uncertainty in the estimates.

§ Much of the focus has been on generating redshift PDFs. Using redshift PDFs instead 
of point estimates has been shown to improve the accuracy of cosmological 
measurements.

§ Statistically, a galaxy can be described by a multivariate PDF of redshift and physical 
properties.

§ A new class of SED/template-fitting codes (BAGPIPES, BEAGLE, BAYESED etc…) use 
a Bayesian approach to derive these multivariate PDFs. 

§ However, they are not efficient for generating PDFs for a large number of galaxies.

§ We use a ML-based approach to solve this problem. In particular, we focused on joint 
redshift - stellar mass pdfs.
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Random Forest: Introduction
§ Random forest is an ensemble supervised machine learning algorithm based on 

decision trees.

§ Easy to implement and understand (i.e. not a black box).

§ Generalises well, resistant to over-fitting.

§ Can be used for regression and classification tasks.

§ It has previously been used to predict redshifts, stellar masses and star formation 
rates of galaxies.
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A simple decision tree: should I 
take my umbrella with me today?

Is it raining?

Ye
s No

Will I spend most 
of my time outside 

today?

Ye
s

Take the umbrella!

No

Will probably be 
okay without one!

No need!

Root 
Node

Leaf 
Node

Decision 
Node



How to build a decision tree 
from data?
§ The goal is to cluster or group data with similar properties.

§ We need a loss function, and generally for regression trees the 
variance is used.
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§ Choose a feature and location which minimises the variance.

§ Repeat the process until some threshold.

§ The decision tree can now be used to predict for new data. For 
classification the prediction is a class and for regression the outcome 
is a mean value.

Credit: https://victorzhou.com/blog/intro-to-random-forests/

https://victorzhou.com/blog/intro-to-random-forests/


Random Forest: Algorithm
A random forest consists of many decision trees with a 
few tweaks.

1. Sample randomly from data with replacement.

2. Choose only a subset of input features.

3. Create a decision tree from the bootstrapped 
sample and the chosen features.

4. Repeat.

To make a prediction:  

§ Classification - Majority vote

§ Regression - Average
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Credit: https://www.analyticsvidhya.com/blog/2020/05/
decision-tree-vs-random-forest-algorithm/

https://www.analyticsvidhya.com/blog/2020/05/


Random Forest: Method
§ Galaxies cluster together in n-dimensional space if they have similar values of input 

features (e.g. colours).

§ RF aims to find these clusters by minimising a loss function (based on the variance), 
with redshift and stellar mass as the target variables.

§ These clusters end up in the leaf nodes of the decision trees. The leaf nodes contain 
redshifts and stellar masses of similar galaxies.

§ Once the random forest has been trained, we pass a ‘new’ galaxy down all the decision 
trees and it should end up in leaf nodes that are representative.

§ To extract point estimates, we average the redshift and stellar mass values of training 
galaxies in the leaf nodes.

§ To build marginal PDFs, we separately aggregate all the redshift and stellar mass 
values in the leaf nodes in all the decision trees.

§ We combine the aggregated values to build joint PDFs.
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Data: DES Y3 Deep Fields & 
COSMOS

§ We use three different datasets: DES Y3 Deep Fields (DF), DES Y3 Balrog & 
COSMOS2015.

§ Y3 DF catalogue contains deep and precise griz photometry of more than 1.7 million 
objects. 

§ We combine this with the COSMOS2015 catalogue, which has accurate redshifts and 
stellar masses to produce a ‘baseline’ DF dataset.

§ However, our target is the main wide-field (WF) DES.

§ We cannot use the DF dataset to train a RF model as the photometric errors present in 
the DF would not reflect those in the WF.

§ Secondly, the COSMOS field does not overlap with the main survey area. The redshifts 
and stellar masses estimated using 4-band WF data would be imprecise, compared to 
those in the COSMO2015.

§ In essence, we require a catalogue of DF galaxies which emulate galaxies in the WF.

§ This leads us to Balrog.
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Data: DES Y3 Balrog & 
COSMOS

§ Balrog is a Python package for measuring the transfer function of imaging surveys.

§ We use the DES Y3 Balrog catalogue.

§ Model fits of galaxies are drawn randomly from the Y3 DF catalogue and injected into 
DES-Y3 single-epoch images.

§ The DES measurement pipeline is rerun on these injected images to produce the DES 
Y3 Balrog catalogue. 

§ The resulting catalogue is a Monte Carlo sampling of the DES transfer function and 
contains true and measured griz photometry.

§ This catalogue provides us with ready-made emulated galaxies in our target wide-field 
dataset (DES Y3 Gold).

§ We combine this catalogue with the COSMO2015 to produce our ‘WF’ dataset.
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Pre-processing
§ We apply some simple cuts to produce the DF and WF 

datasets.

1. i < 23.5

2. 0 < z < 9.99 – to discard any galaxies with erroneous 
redshifts and stellar masses.

3. MEAS_CM_FLAG = 0 – to remove any galaxies with 
erroneous flux measurements.

§ We convert fluxes into ‘asinh’ magnitudes or ‘luptitudes’ to 
avoid removing any galaxies with close to zero or negative 
fluxes.

§ Finally, we perform an 80:20 split on each dataset for 
training and testing.

§ DF and WF training : 42,792 & 314,196

§ DF and WF testing: 10,699
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RF Models
§ We build two RF models: DES-DF and DES-WF.

§ DES-DF trained using the DF dataset and it allows us to establish the baseline 
performance.

§ DES-WF trained using the WF dataset to produce joint PDFs for galaxies in our target 
dataset.

§ We predict redshift and stellar mass simultaneously (multivariate target regression), 
with the following input features: 

1. griz luptitudes

2. g-r, r-i, i-z lupticolours

3. luptitudes + lupticolour errors
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Results: Point Estimates
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DES-DF performing better 
than DES-WF. This is 
expected.

Taking into account the 
degraded photometry, 
DES-WF still performing 
well as most data points lie 
close to the diagonal.

Outliers at low and high 
redshift due to a lack of 
training data + 
degeneracies.



Validation: Marginal PDFs
§ Unlike point estimates, the ‘true’ PDFs are not available for comparison.

§ We cannot validate individual PDFs, but we can determine their overall validity.

§ We use two different modes of calibration: probabilistic and marginal calibration.
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Probabilistic calibration
§ True values of redshift and stellar mass should be 

random draws from their respective marginal PDFs.

§ We can determine probabilistic calibration using the 
probability integral transform (PIT).
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§ If the values are random draws, then the PIT will be a 
random number between 0 and 1. 

§ As a result, for an ensemble of galaxies, the 
distribution of PIT values should follow the standard 
uniform distribution.
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Probabilistic calibration
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Uniform PIT histograms, 
catastrophic outliers 
approx. 2%.

DES-DF performing 
marginally better than 
DES-WF in terms of 
probabilistic calibration.



Marginal calibration
§ Average predictive CDF should match the ‘true’ empirical CDF. 
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Marginal calibration
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Small fluctuations about the zero line indicate DES-DF and DES-WF are 
performing well.



Joint PDFs
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Joint PDFs of the 
same test galaxy 
occupy similar regions 
of the redshift-stellar 
mass space.

DES-DF produces 
more compact PDFs, 
reflecting the precise 
photometry used.



Validation: Joint PDFs
§ The methods we have used so far cannot be used to validate multivariate PDFs.

§ For example, the PIT distribution is no longer uniform.

§ We use the multivariate extensions of probabilistic and marginal calibration to 
validate our joint PDFs. These are probabilistic copula calibration and Kendall 
calibration.

§ These modes of calibration can be interpreted in the same manner as their 
univariate counterparts.
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Probabilistic copula calibration
§ Probabilistic copula calibration can be assessed by using the copula probability integral 

transform (copPIT):

𝑐𝑜𝑝𝑃𝐼𝑇 = 𝒦- 𝐻 =𝑦

§ The Kendall distribution function is defined as:

𝒦- 𝐻 =𝑦 = 𝑃(𝐻 𝑦 ≤ 𝐻 =𝑦 )
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Probabilistic copula calibration
§ Multivariate analogue of the PIT distribution.

1. Evaluate predicted joint CDF H(y) at each 
point prediction.

2. Evaluate the CDF at the ‘true’ redshift and 
stellar mass.

3. Compute copPIT.

𝑐𝑜𝑝𝑃𝐼𝑇 = 𝑃(𝐻 𝑦 ≤ 𝐻 =𝑦 )

§ copPIT distribution uniform if joint PDFs are 
copula calibrated.
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Credit: https://www.freakonometrics.hypotheses.org/1126

https://www.freakonometrics.hypotheses.org/1126


Probabilistic copula calibration
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Uniform copPIT histogram, with DES-DF performing slightly 
better than DES-WF.



Kendall calibration
§ Kendall calibration can be assessed by comparing the ‘average Kendall distribution 

function’, !𝒦-!, to the empirical CDF of the predicted joint CDFs evaluated at the 
true redshifts and stellar mass, #𝐽) :
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§ Kendall calibration probes how well the dependence structure between redshift and 
stellar mass is predicted on average. 
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Kendall calibration
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DES-WF performing better than DES-DF in this 
metric due to incorporation of photometric errors 
as it is trained on multiple scattered copies of DF 
galaxies.



Comparison: Template-fitting
§ The diagnostic plots and the metrics we have utilised are difficult to fully appreciate 

without familiar context.

§ As a result, we compare our results against those achieved by the SED-fitting method 
Bayesian Analysis of Galaxies for Physical Inference and Parameter Estimation, or 
BAGPIPES.

§ It generates complex model galaxy spectra and fits these models to spectroscopic and/or 
photometric data to infer galaxy properties.

§ BAGPIPES uses MultiNest nested sampling algorithm to generate multivariate posterior 
PDFs of redshift and physical properties of galaxies.

§ We run BAGPIPES on test galaxies in the DF dataset, inputting photometry in Subaru V, 
r, i+ and z++ bands.

§ To validate the PDFs, we run BAGPIPES again, but this time with 22 COSMOS bands 
(including the four mentioned above).
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Comparison: Results

Our ML-based method performs better than BAGPIPES in all the metrics we have 
considered in our analysis. The redshift PIT distribution for BAGPIPES is still competitive 
with other template-fitting codes. 25



GALPRO
§ GALPRO is a highly intuitive and efficient Python package based on the random forest 

algorithm to generate multivariate PDFs of galaxy properties on-the-fly.

§ Code: https://github.com/smucesh/galpro

§ Documentation: https://galpro.readthedocs.io/en/latest/
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https://github.com/smucesh/galpro
https://galpro.readthedocs.io/en/latest/


Applications
§ Joint redshift-stellar mass PDFs have many applications. 

§ For example, to study the evolution of the stellar mass 
function.

§ An interesting application of GALPRO could be to generate 
joint redshift-luminosity PDFs for measurement of the 
Hubble constant from dark standard sirens.

§ Using full redshift PDFs has been shown to improve 
measurements, and joint redshift-luminosity PDFs allows 
one to define the selection function of a galaxy sample.
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Credit: https://www.nasa.gov/feature/goddard/2018/new-simulation
-sheds-light-on-spiraling-supermassive-black-holes

https://www.nasa.gov/feature/goddard/2018/new-simulation-sheds-light-on-spiraling-supermassive-black-holes
https://www.nasa.gov/feature/goddard/2018/new-simulation-sheds-light-on-spiraling-supermassive-black-holes


Summary & Outlook
§ Successfully extracted point estimates, marginal and joint PDFs of redshift and stellar 

mass using the random forest algorithm.

§ Performed validation checks for both the marginal and joints PDFs using different 
metrics.

§ Compared our results to those achieved by the template-fitting code BAGPIPES.

§ We find that our method is producing highly accurate joint PDFs, with only small 
calibration errors.

§ We have developed GALPRO, a Python package which can generate n-dimensional 
PDFs on-the-fly, thus removing the problem of storage 
(https://galpro.readthedocs.io/en/latest/).

§ In terms of speed, GALPRO is extremely fast, potentially able to generate joint PDFs 
for a million galaxies in just under 6 minutes with consumer computer hardware.

§ Future applications to LSST and Euclid data.
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