

Joint redshift-stellar mass PDFs with Random Forest

Sunil Mucesh

Supervisors: Prof. Ofer Lahav & Dr. Will Hartley

Collaborators: Dr. Antonella Palmese & Dr. Lorne Whiteway

Motivation

- Point estimates of galaxy properties determined with few photometric bands are imprecise.
- We require PDFs to fully characterise the uncertainty in the estimates.
- Much of the focus has been on generating redshift PDFs. Using redshift PDFs instead
 of point estimates has been shown to improve the accuracy of cosmological
 measurements.
- Statistically, a galaxy can be described by a multivariate PDF of redshift and physical properties.
- A new class of SED/template-fitting codes (BAGPIPES, BEAGLE, BAYESED etc...) use a Bayesian approach to derive these multivariate PDFs.
- However, they are not efficient for generating PDFs for a large number of galaxies.
- We use a ML-based approach to solve this problem. In particular, we focused on joint redshift stellar mass pdfs.

Random Forest: Introduction

- Random forest is an ensemble supervised machine learning algorithm based on decision trees.
- Easy to implement and understand (i.e. not a black box).
- Generalises well, resistant to over-fitting.
- Can be used for regression and classification tasks.
- It has previously been used to predict redshifts, stellar masses and star formation rates of galaxies.

Credit: Flaticon

A simple decision tree: should I take my umbrella with me today?

<u></u>LOCL

Is it raining?

Root Node

Decision Node Will I spend most of my time outside today?

No need!

Take the umbrella!

Will probably be okay without one!

Leaf Node

How to build a decision tree from data?

- The goal is to cluster or group data with similar properties.
- We need a loss function, and generally for regression trees the variance is used.

$$S = \frac{1}{n_m} \sum_{m} \sum_{i \in m} (\widetilde{y}_i - \overline{y}_m)^2$$

- Choose a feature and location which minimises the variance.
- Repeat the process until some threshold.
- The decision tree can now be used to predict for new data. For classification the prediction is a class and for regression the outcome is a mean value.

Credit: https://victorzhou.com/blog/intro-to-random-forests/

Random Forest: Algorithm

A random forest consists of many decision trees with a few tweaks.

- 1. Sample randomly from data with replacement.
- 2. Choose only a subset of input features.
- 3. Create a decision tree from the bootstrapped sample and the chosen features.
- 4. Repeat.

To make a prediction:

- Classification Majority vote
- Regression Average

Credit: https://www.analyticsvidhya.com/blog/2020/05/ decision-tree-vs-random-forest-algorithm/

Random Forest: Method

- Galaxies cluster together in n-dimensional space if they have similar values of input features (e.g. colours).
- RF aims to find these clusters by minimising a loss function (based on the variance), with redshift and stellar mass as the target variables.
- These clusters end up in the leaf nodes of the decision trees. The leaf nodes contain redshifts and stellar masses of similar galaxies.
- Once the random forest has been trained, we pass a 'new' galaxy down all the decision trees and it should end up in leaf nodes that are representative.
- To extract point estimates, we average the redshift and stellar mass values of training galaxies in the leaf nodes.
- To build marginal PDFs, we separately aggregate all the redshift and stellar mass values in the leaf nodes in all the decision trees.
- We combine the aggregated values to build joint PDFs.

Data: DES Y3 Deep Fields & COSMOS

- We use three different datasets: DES Y3 Deep Fields (DF), DES Y3 Balrog & COSMOS2015.
- Y3 DF catalogue contains deep and precise *griz* photometry of more than 1.7 million objects.
- We combine this with the COSMOS2015 catalogue, which has accurate redshifts and stellar masses to produce a 'baseline' DF dataset.
- However, our target is the main wide-field (WF) DES.
- We cannot use the DF dataset to train a RF model as the photometric errors present in the DF would not reflect those in the WF.
- Secondly, the COSMOS field does not overlap with the main survey area. The redshifts and stellar masses estimated using 4-band WF data would be imprecise, compared to those in the COSMO2015.
- In essence, we require a catalogue of DF galaxies which emulate galaxies in the WF.
- This leads us to Balrog.

- Balrog is a Python package for measuring the transfer function of imaging surveys.
- We use the DES Y3 Balrog catalogue.
- Model fits of galaxies are drawn randomly from the Y3 DF catalogue and injected into DES-Y3 single-epoch images.
- The DES measurement pipeline is rerun on these injected images to produce the DES Y3 Balrog catalogue.
- The resulting catalogue is a Monte Carlo sampling of the DES transfer function and contains true and measured *griz* photometry.
- This catalogue provides us with ready-made emulated galaxies in our target wide-field dataset (DES Y3 Gold).
- We combine this catalogue with the COSMO2015 to produce our 'WF' dataset.

Pre-processing

- We apply some simple cuts to produce the DF and WF datasets.
- 1. i < 23.5
- 2. 0 < z < 9.99 to discard any galaxies with erroneous redshifts and stellar masses.
- 3. MEAS_CM_FLAG = 0 to remove any galaxies with erroneous flux measurements.
- We convert fluxes into 'asinh' magnitudes or 'luptitudes' to avoid removing any galaxies with close to zero or negative fluxes.
- Finally, we perform an 80:20 split on each dataset for training and testing.
- DF and WF training: 42,792 & 314,196
- DF and WF testing: 10,699

RF Models

- We build two RF models: DES-DF and DES-WF.
- DES-DF trained using the DF dataset and it allows us to establish the baseline performance.
- DES-WF trained using the WF dataset to produce joint PDFs for galaxies in our target dataset.
- We predict redshift and stellar mass simultaneously (multivariate target regression), with the following input features:
- 1. griz luptitudes
- 2. g-r, r-i, i-z lupticolours
- 3. luptitudes + lupticolour errors

DES-DF performing better than DES-WF. This is expected.

Taking into account the degraded photometry, DES-WF still performing well as most data points lie close to the diagonal.

Outliers at low and high redshift due to a lack of training data + degeneracies.

Validation: Marginal PDFs

- Unlike point estimates, the 'true' PDFs are not available for comparison.
- We cannot validate individual PDFs, but we can determine their overall validity.
- We use two different modes of calibration: probabilistic and marginal calibration.

Probabilistic calibration

- True values of redshift and stellar mass should be random draws from their respective marginal PDFs.
- We can determine probabilistic calibration using the probability integral transform (PIT).

$$PIT = \int_{-\infty}^{\tilde{y}} f(y) \, dy$$

- If the values are random draws, then the PIT will be a random number between 0 and 1.
- As a result, for an ensemble of galaxies, the distribution of PIT values should follow the standard uniform distribution.

Probabilistic calibration

Uniform PIT histograms, catastrophic outliers approx. 2%.

DES-DF performing marginally better than DES-WF in terms of probabilistic calibration.

Marginal calibration

Average predictive CDF should match the 'true' empirical CDF.

$$\widehat{F}_I(y) = \frac{1}{n} \sum_{i=1}^n F_i(y) \qquad \widetilde{G}_I(y) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{\widetilde{y}_i \le y\}$$

Marginal calibration

Small fluctuations about the zero line indicate DES-DF and DES-WF are performing well.

Joint PDFs

Joint PDFs of the same test galaxy occupy similar regions of the redshift-stellar mass space.

DES-DF produces more compact PDFs, reflecting the precise photometry used.

Validation: Joint PDFs

- The methods we have used so far cannot be used to validate multivariate PDFs.
- For example, the PIT distribution is no longer uniform.
- We use the multivariate extensions of probabilistic and marginal calibration to validate our joint PDFs. These are probabilistic copula calibration and Kendall calibration.
- These modes of calibration can be interpreted in the same manner as their univariate counterparts.

Probabilistic copula calibration

 Probabilistic copula calibration can be assessed by using the copula probability integral transform (copPIT):

$$copPIT = \mathcal{K}_H(H(\tilde{y}))$$

• The Kendall distribution function is defined as:

$$\mathcal{K}_H(H(\tilde{y})) = P(H(y) \le H(\tilde{y}))$$

Probabilistic copula calibration

- Multivariate analogue of the PIT distribution.
- 1. Evaluate predicted joint CDF H(y) at each point prediction.
- 2. Evaluate the CDF at the 'true' redshift and stellar mass.
- 3. Compute copPIT.

$$copPIT = P(H(y) \le H(\tilde{y}))$$

 copPIT distribution uniform if joint PDFs are copula calibrated.

Credit: https://www.freakonometrics.hypotheses.org/1126

Probabilistic copula calibration

Uniform copPIT histogram, with DES-DF performing slightly better than DES-WF.

Kendall calibration

• Kendall calibration can be assessed by comparing the 'average Kendall distribution function', $\widehat{\mathcal{K}}_{H_I}$, to the empirical CDF of the predicted joint CDFs evaluated at the true redshifts and stellar mass, \widetilde{J}_I :

$$\widehat{\mathcal{K}_{H_I}}(w) = \frac{1}{n} \sum_{i=1}^n \mathcal{K}_{H_i}(w) \qquad \widetilde{J}_I(w) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{H_i(\widetilde{y_i}) \le w\}$$

• Kendall calibration probes how well the dependence structure between redshift and stellar mass is predicted on average.

Kendall calibration

DES-WF performing better than DES-DF in this metric due to incorporation of photometric errors as it is trained on multiple scattered copies of DF galaxies.

Comparison: Template-fitting

- The diagnostic plots and the metrics we have utilised are difficult to fully appreciate without familiar context.
- As a result, we compare our results against those achieved by the SED-fitting method Bayesian Analysis of Galaxies for Physical Inference and Parameter Estimation, or BAGPIPES.
- It generates complex model galaxy spectra and fits these models to spectroscopic and/or photometric data to infer galaxy properties.
- BAGPIPES uses MultiNest nested sampling algorithm to generate multivariate posterior PDFs of redshift and physical properties of galaxies.
- We run BAGPIPES on test galaxies in the DF dataset, inputting photometry in Subaru V, r, i+ and z++ bands.
- To validate the PDFs, we run BAGPIPES again, but this time with 22 COSMOS bands (including the four mentioned above).

Comparison: Results

Our ML-based method performs better than BAGPIPES in all the metrics we have considered in our analysis. The redshift PIT distribution for BAGPIPES is still competitive with other template-fitting codes.

GALPRO

• GALPRO is a highly intuitive and efficient Python package based on the random forest algorithm to generate multivariate PDFs of galaxy properties on-the-fly.

Code: https://github.com/smucesh/galpro

Documentation: https://galpro.readthedocs.io/en/latest/

Applications

- Joint redshift-stellar mass PDFs have many applications.
- For example, to study the evolution of the stellar mass function.
- An interesting application of GALPRO could be to generate joint redshift-luminosity PDFs for measurement of the Hubble constant from dark standard sirens.
- Using full redshift PDFs has been shown to improve measurements, and joint redshift-luminosity PDFs allows one to define the selection function of a galaxy sample.

Credit: https://www.nasa.gov/feature/goddard/2018/new-simulation-sheds-light-on-spiraling-supermassive-black-holes

Summary & Outlook

- Successfully extracted point estimates, marginal and joint PDFs of redshift and stellar mass using the random forest algorithm.
- Performed validation checks for both the marginal and joints PDFs using different metrics.
- Compared our results to those achieved by the template-fitting code BAGPIPES.
- We find that our method is producing highly accurate joint PDFs, with only small calibration errors.
- We have developed GALPRO, a Python package which can generate n-dimensional PDFs on-the-fly, thus removing the problem of storage (https://galpro.readthedocs.io/en/latest/).
- In terms of speed, GALPRO is extremely fast, potentially able to generate joint PDFs for a million galaxies in just under 6 minutes with consumer computer hardware.
- Future applications to LSST and Euclid data.